
Subject: Re: (re-)introducing Dependency Injection
Posted by DannyBoyPoker on Sun, 07 Apr 2013 01:01:27 GMT
View Forum Message <> Reply to Message

First you say 'The idea that you may want to swap out one menu system for another is pointless.'
And then you say 'Finally, you ask the question "how to accomplish this?" How to accomplish
what exactly?' It's not really that I don't want to use the Radicore menu system, but rather, that I
may want, generally, to pick and choose from various components that all work from a common
database. Here's the pitch:

Each module builds upon the others to provide additional functionality. These intelligent modules
can even detect their peers and may offer additional functionality depending on what other
modules are present. I have spent countless hours developing modules that perform specific
functions for a web site on their own but because they all interconnect, the more modules you
have, the more functionality each may provide.

Now, in such a case, User Management, and security, could be separate modules. You say:
'Radicore has a single built-in menu system which cannot be changed for another. If you don't
want to use the Radicore menu system then don't use Radicore.' And, to this, I ask, what is 'core',
in Radicore? I'm fine with it, if the basic functionality provided is fairly substantial, that's a good
thing. And it is. But building on top of it, would mean, could mean various things, expanding the
user interactive stuff, or the general information stuff, or business management stuff. eCommerce
stuff.

And, the point is to discuss the problem a dependency. And, the the Dependency Injection
pattern is only applicable in software systems consisting of separated components. The idea is
that outer components inject dependencies into smaller components. Along with definitions of
dependency, cohesion and coupling, we might try to find agreement, on what are the attributes to
make something a component. I don't think it's true, that this doesn't matter to you, you are
offering, in Radicore, components that in the general case have a limited scope of interest. And,
these component instances cannot access properties of other components, unless you're
providing a way to do so. And, your components are reusable and might be used in different
systems in a way that the using system does not have to change code on the imported
component to make it work.

If I say something like that in Radicore, maybe there are not enough components, then this only to
ask for more Radicore, in Radicore. The idea is to not make it hard to write reusable software and
test these in isolation, right? You give reasons why you don't use DI and that is fine (actually you
do, to a great extent, I would have said, when I actually look at the code), as the point is not that
couldn't possibly be a cleaner solution for dissolving dependencies. If you identify your
dependencies, then refactor to components, as you have, largely, then you can proceed to keep
your components dumb, and the DI pattern is just something that supposedly makes it easy.

Page 1 of 1 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=817
index.php?t=rview&th=846&goto=3655#msg_3655
index.php?t=post&reply_to=3655
index.php

