
Subject: (re-)introducing Dependency Injection
Posted by DannyBoyPoker on Sat, 06 Apr 2013 03:03:46 GMT
View Forum Message <> Reply to Message

I've seen this:
 http://www.tonymarston.net/php-mysql/dependency-injection-is -evil.html

What does "Dependency" mean? etc. And: 'Using terms such as "dependency", "coupling" and
"cohesion" can be confusing unless you identify exactly what they mean.'

Here I learn, that 'coupling' describes how modules interact. Lower coupling is better. And:
--
Tightly coupled systems tend to exhibit the following developmental characteristics, which are
often seen as disadvantages:
A change in one module usually forces a ripple effect of changes in other modules. Assembly of
modules might require more effort and/or time due to the increased inter-module dependency.
A particular module might be harder to reuse and/or test because dependent modules must be
included.
--

And, I learn of 'too many dunderheads out there', etc. 'And these people call me crazy!' And, I've
been there    

You quote an article, that has this line: 'Consider the below example we have a customer class
which contains an address class object etc.'

And, your impatience w/this is pretty boundless. So, of this: 'Customer class is aware of the
address class type. So if we add new address types like home address, office address it will lead
to changes in the customer class also as customer class is exposed to the actual address
implementation'.

You offer here, that: This is a meaningless accusation which describes a non-problem. It is a
simple fact that the customer object must communicate with the address object in order to obtain
the customer's address, so the customer object *MUST* know that the address object exists, and
it *MUST* know which method to use to get the data it wants. It is simply not possible to write
code which effectively says "get me some data from an unknown object using an unknown
method" - unless, of course, you live in cloud cuckoo land.

I don't gather that the author of this article lives in cloud cuckoo land. 

It may be a simple fact that etc., as you say, but this is not a meaningless accusation that
describes a non-problem. I suppose that it actually is a non-problem if it can't be solved. Then, is it
possible to write code which effectively says "get me some data from an unknown object using an
unknown method"? Given that he lists various types of DI to implement what he wants
(specifically, he mentions four), and how 'we can actually implement these', and here, he talks
about using factory, and about a container, I'll leave this aside. 

The point I want to get to, is, are you addressing, here, his two points? Which are, first, that main

Page 1 of 6 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=817
index.php?t=rview&th=846&goto=3646#msg_3646
index.php?t=post&reply_to=3646
index.php


classes aggregating other classes should not depend on the direct implementation of the
aggregated classes. What then? Well, both the classes should, putatively, depend on abstraction.
And, second, abstraction should not depend on details (rather, details should depend on
abstraction). This is what he calls tight coupling, which is what he calls the problem. 

And, you ask: 'all the "problems" identified in that article do not exist in my application, so if the
problems do not exist then can you please explain to me in words on one syllable what benefits I
would obtain by implementing this solution?'

You also cite an article:
 http://ralphschindler.com/2011/05/18/learning-about-dependen cy-injection-and-php

And you say: 'I therefore consider the article to be a waste of space and unworthy of serious
consideration, especially from an OO heretic such as me.'

Okay, so, um, okay, I'm not picking on you--this is a cry for help. You asked. I note, that this article
says: 'This article is not about the intricacies and implementation details of DI containers and DI
frameworks.'

I kind of gather a comportment from you on this, maybe it's possible to caricature, that you're
saying: Decouple A from B? Why? A needs B! 

To this general point, I have a general answer, that therein lies the problem. If I have a plug, and
then I have an outlet, what is the reasonable response? However, software systems, so I am told,
become unmaintainable because we let them grow on their own, without keeping a keen eye on
how that growth is proceeding, until, one day, we realize that our software is a tangled mess of
copied code and interwoven dependencies. And we have no one to blame but ourselves. Which I
write, for my own benefit, I'm experienced, with taking action, without considering the reasons or
implications. 

More specifically, I see this: http://www.radicore.org/whatisradicore.php

8. Developers are spared the chore of designing and coding their hierarchy of menus as
RADICORE comes supplied with a pre-built MENU system which allows menu pages to be
constructed and maintained using a standard set of online screens.

9. Developers are spared the chore of designing and building a security system as RADICORE
comes supplied with a pre-built RBAC system which allows access control lists to be constructed
and maintained using a standard set of online screens.

However, I notice, that, in fact, the 'menu' subsystem, is really a menu and security system.
Instead of there being a separate, global security system, security is  handled by the menu
subsystem. "Menu", in fact, maintains a list of the subsystems, and has a pointer to itself, as one
of them. The users, and roles, tasks, also, are maintained, by the menu subsystem. Nothing runs
w/out the menu subsystem, then. You can't not have a menu. 

It occurs to me, that one might want to swap out the menu system, for another. This wouldn't be a
simple as dropping in another menu subsystem, as a replacement. You can't delete the

Page 2 of 6 ---- Generated from Radicore Forum

index.php


menu subsystem. I might have supposed, that menu systems, and, more generally, structure &
navigation,
would be areas in which one might want to mix and match various components. One might have a
few menu
components, and display them both on a page (which is more the rule, than the exception).

One might, similarly, take this view of access & security. Furthermore, these are maybe two
different things. Authentication would be a matter of site access, for example. One might describe 
password management, backup, site monitoring, as security. 

How to accomplish this?

Subject: Re: (re-)introducing Dependency Injection
Posted by AJM on Sat, 06 Apr 2013 13:33:08 GMT
View Forum Message <> Reply to Message

Follow these links for definitions of dependency, cohesion and coupling.

One reason that I don't use DI is that I prefer to instantiate an object only when I need it and not
before. Sometimes my CUSTOMER object may need to access the ADDRESS object, and
sometimes it may not. Why instantiate an object that is not going to be used? In some cases there
may be a choice of possible classes, and I don't know which one I want until I come to access it.
There may also be arguments that I need to supply to the constructor which are only known at the
last moment. 

The main reason I don't use DI is that it requires too much effort for too little reward, and my code
is easier to write without it. It is also easier to read and maintain, especially by others, and that is
*FAR* more important than following some stupid principle devised by some DIC head (do you
see the play on words there?)

Your point that "main classes aggregating other classes should not depend on the direct
implementation of the aggregated classes" is just an opinion as far as I am concerned and not an
absolute rule. Unless you can prove that breaking this rule has unwanted consequences then I
shall continue breaking it until the cows come home.

Another point which falls into the same category is "both the classes should depend on
abstractions". What on earth does that mean? A class is the result of performing an abstraction,
so what does "abstraction" mean in that statement? What does the statement "abstractions should
not depend on details, details should depend on abstractions" supposed to mean? This sounds
like pure gobbledegook to me.

You statement about the menu system being intertwined with the security system is also
pointless. There is a menu system and there is a security system as they each have their own
separate sets of maintenance screens. They interact at runtime when a list of menu options is
filtered to remove those to which the user does *not* have access, thus producing a list which the

Page 3 of 6 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=3
index.php?t=rview&th=846&goto=3651#msg_3651
index.php?t=post&reply_to=3651
index.php


user *can* access. They are separate, yet they work together to produce a result.

The idea that you may want to swap out one menu system for another is pointless. Radicore has
a single built-in menu system which cannot be changed for another. If you don't want to use the
Radicore menu system then don't use Radicore.

Finally, you ask the question "how to accomplish this?" How to accomplish what exactly? Your
post is so full of numerous meandering statements it is difficult to see where there is a real
question.

Subject: Re: (re-)introducing Dependency Injection
Posted by DannyBoyPoker on Sun, 07 Apr 2013 01:01:27 GMT
View Forum Message <> Reply to Message

First you say 'The idea that you may want to swap out one menu system for another is pointless.'
And then you say 'Finally, you ask the question "how to accomplish this?" How to accomplish
what exactly?' It's not really that I don't want to use the Radicore menu system, but rather, that I
may want, generally, to pick and choose from various components that all work from a common
database. Here's the pitch: 

Each module builds upon the others to provide additional functionality. These intelligent modules
can even detect their peers and may offer additional functionality depending on what other
modules are present. I have spent countless hours developing modules that perform specific
functions for a web site on their own but because they all interconnect, the more modules you
have, the more functionality each may provide. 

Now, in such a case, User Management, and security, could be separate modules. You say:
'Radicore has a single built-in menu system which cannot be changed for another. If you don't
want to use the Radicore menu system then don't use Radicore.' And, to this, I ask, what is 'core',
in Radicore? I'm fine with it, if the basic functionality provided is fairly substantial, that's a good
thing. And it is. But building on top of it, would mean, could mean various things, expanding the
user interactive stuff, or the general information stuff, or business management stuff. eCommerce
stuff. 

And, the point is to discuss the problem  a dependency. And, the the Dependency Injection
pattern is only applicable in software systems consisting of separated components. The idea is
that outer components inject dependencies into smaller components. Along with definitions of
dependency, cohesion and coupling, we might try to find agreement, on what are the attributes to
make something a component. I don't think it's true, that this doesn't matter to you, you are
offering, in Radicore, components that in the general case have a limited scope of interest. And,
these component instances cannot access properties of other components, unless you're
providing a way to do so. And, your components are reusable and might be used in different
systems in a way that the using system does not have to change code on the imported
component to make it work.  

Page 4 of 6 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=817
index.php?t=rview&th=846&goto=3655#msg_3655
index.php?t=post&reply_to=3655
index.php


If I say something like that in Radicore, maybe there are not enough components, then this only to
ask for more Radicore, in Radicore. The idea is to not make it hard to write reusable software and
test these in isolation, right? You give reasons why you don't use DI and that is fine (actually you
do, to a great extent, I would have said, when I actually look at the code), as the point is not that
couldn't possibly be a cleaner solution for dissolving dependencies. If you identify your
dependencies, then refactor to components, as you have, largely, then you can proceed to keep
your components dumb, and the DI pattern is just something that supposedly makes it easy. 

Subject: Re: (re-)introducing Dependency Injection
Posted by AJM on Sun, 07 Apr 2013 10:15:22 GMT
View Forum Message <> Reply to Message

It is quite clear that you do not understand what RADICORE is. It is *NOT* a collection of libraries
from which you can pick and choose, it is a fully-fledged framework which you either use in its
entirety or you do not use at all. RADICORE has a single menu system and a single security
system which are intertwined. You can customise the way it looks by replacing the CSS files but
you cannot change the way it works. You can swap the password authentication by using either a
RADIUS or an LDAP server, but you cannot change how you allow/disallow a user's access to a
specific task.

There is an in-built audit logging system which you can turn off should you choose, but you cannot
swap it for another, nor can you extract it to use without the rest of RADICORE.

There is an in-built workflow system which you can turn on should you choose, but you cannot
swap it for another, nor can you extract it to use without the rest of RADICORE.

There is an in-built data dictionary and collection of transaction patterns which you use to
generate your application components, but you cannot swap it for another, nor can you extract it
to use without the rest of RADICORE.

You do not use RADICORE on its own, you use it to build your own back-end application. There
are several prototype applications included in the download which you can play with and examine.
Your application will have numerous database tables to maintain and numerous user transactions
which implement your business logic. You can build the basic CRUD screens for each of your
database tables very quickly, then all you do is add the code to process your business rules.

Although RADICORE's presentation layer is not suitable for customer-facing front-end websites (it
was designed specifically for members of staff who administer the site) it's implementation of the 3
Tier Architecture means that you can easily create an alternative presentation layer using
whatever tools you like, but which shares the business and data access layers already within
RADICORE.

I have used RADICORE to build an order processing application called TRANSIX which is
currently used by businesses as varied as custom jewellery, baby clothes and photographic prints.
They all share the same back-end (although they have their own private instances of the
databases) but they each have their own unique front-end websites. Because they require nothing
more than a different presentation layer they are quick and easy to build.

Page 5 of 6 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=3
index.php?t=rview&th=846&goto=3658#msg_3658
index.php?t=post&reply_to=3658
index.php


When you build your own application using RADICORE you have instant access to all the features
within RADICORE, and you are free to write your own business logic and use whatever external
libraries that take your fancy.

I don't use Dependency Injection within RADICORE because it has enormous costs and zero
benefits. It has benefits in only a limited set of circumstances, and those circumstances do not
exist within RADICORE. I will *NEVER* refactor RADICORE to use DI, so telling me that, in your
opinion, DI is a good idea is just a waste of time.

Subject: Re: (re-)introducing Dependency Injection
Posted by AJM on Tue, 28 Nov 2023 09:01:11 GMT
View Forum Message <> Reply to Message

More of my thoughts on this topic can be found at Dependency Injection is EVIL.

Page 6 of 6 ---- Generated from Radicore Forum

index.php?t=usrinfo&id=3
index.php?t=rview&th=846&goto=7844#msg_7844
index.php?t=post&reply_to=7844
index.php

